Distinct GAGE and MAGE-A expression during early human development indicate specific roles in lineage differentiation.
نویسندگان
چکیده
BACKGROUND Expression of cancer/testis-associated proteins (CTAs) has traditionally been considered to be restricted to germ cells in normal tissues and to different types of malignancies. We have evaluated the potential role of CTAs in early human development. METHODS Using immunohistochemistry and RT-PCR, we investigated the expression of CTAs in differentiated human embryonic stem cells (hESC) and in late embryos and early fetuses. RESULTS We found that melanoma antigen A (MAGE-A) family members were expressed during differentiation of hESC to embryoid bodies and in teratomas, and overlapped with expression of the neuroectodermal markers beta-tubulin 3, Pax6 and nestin. A widespread expression of MAGE-A was also observed in neurons of the early developing central nervous system and peripheral nerves. G antigen (GAGE) expression was present in the early ectoderm of embryos, including cells of the ectodermal ring and apical epidermal ridge. Neuroectodermal cells in the floor plate and adjacent processes and endfeet of radial glial cells also expressed GAGE. In addition, GAGE family members were expressed in the peripheral adrenal cortex of 6-9-week-old embryos and fetuses, which specifically correlated with massive cellular proliferation and establishment of the definitive and fetal zones. Overlapping expression of MAGE-A and GAGE proteins occurred in migrating primordial germ cells. CONCLUSIONS Our results show that CTAs, in addition to their role in germ cells, may be involved in early development of various types of somatic cells, and suggest that they are implicated in specific differentiation processes.
منابع مشابه
MAGE-A1, GAGE and NY-ESO-1 cancer/testis antigen expression during human gonadal development.
BACKGROUND Cancer/testis antigens (CTAs) are expressed in several cancers and during normal adult male germ cell differentiation. Little is known about their role in fetal development of human germ cells. METHODS We examined expression of the CTAs MAGE-A1, GAGE and NY-ESO-1 in fetal gonads by single and double immunohistochemical staining. RESULTS We found that GAGE was expressed in the pri...
متن کاملExpression Patterns of Cancer-Testis Antigens in Human Embryonic Stem Cells and Their Cell Derivatives Indicate Lineage Tracks
Pluripotent stem cells can differentiate into various lineages but undergo genetic and epigenetic changes during long-term cultivation and, therefore, require regular monitoring. The expression patterns of cancer-testis antigens (CTAs) MAGE-A2, -A3, -A4, -A6, -A8, -B2, and GAGE were examined in undifferentiated human embryonic stem (hES) cells, their differentiated derivatives, teratocarcinoma ...
متن کاملGene Expression and Promoter Methylation Status of VHL, Runx-3, E-cadherin, P15 and P16 Genes During EPO-Mediated Erythroid Differentiation of CD34+ Hematopoietic Stem Cells
Background: VHL (von Hippel-Lindau), Runx-3 (Runt-related transcription factor 3), E-cadherin (Epithelial cadherin), P15 (INK4a, cyclin dependent kinase inhibitor), and P16 (INK4b) genes are essential in hematopoiesis. The aim of this study was to explore the correlation between gene expression and promoter methylation in CD34+ stem cells before and after differentiation to erythroid lineage. M...
متن کاملPromoter Methylation and Gene Expression in Human CD34+ Stem Cells Derived Erythroid Lineage by MicroRNA
Background: Stem Cell differentiation is a process composed of vast variety of factors which are controlled by a network of certain mechanisms. This study aims to determine the possible role of DNA methylation, a potent regulator of VHL, ECAD and RUNX3 genes during Erythroid differentiation driven by miR-451. Materials and Methods: To determine the methylation status of promoters and the e...
متن کاملNuclear Architecture and Epigenetics of Lineage Choice
Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human reproduction
دوره 23 10 شماره
صفحات -
تاریخ انتشار 2008